
575

Tec Empresarial
P-ISSN: 1659-2395; E-ISSN: 1659-3359

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

Dr.Ganesh Vilas Patil

Associate Professor, DYPCET, Kolhapur

Abstract: A distributed system offers a practical method for sharing resources. Using a distributed
system will produce different effects depending on the load balancing technique employed. Load
balancing algorithm provides decision making with efficient resource utilization and maximum
throughput. The decision-making process is absent in work distribution or load sharing. Response
time is used as the key attribute to measure the effectiveness of load balancing. There are various
categories in which load balancing can be placed. This division is based on a number of
characteristics. The aim of presented research work is to emphasize the fundamental classification
of load balancing strategies.
Keywords: Distributed System, Static Load Balancing, Dynamic Load Balancing.

1 Introduction

In 1970, advancement in computer hardware and networking technologies resulted in the invention
of distributed system.
Definition 1. (Distributed System) “Distributed system is defined as a set of autonomous
computing nodes interconnected by a computer network and which facilitates users by making
provision of resource sharing in a controlled way”.
Distributed system works as a loosely coupled system. Loosely coupled systems consist of the
computational nodes with its own memory and are interconnected by communication network.
The nodes are interacting with each other with the help of message passing mechanism. Each node
works on the private memory associated with that node so no overhead of memory consistency is
associated. Till today, the distributed system has been changing its face to fulfil the dynamic needs
of the user.

Now a day, because of easy and rapid availability of an internet facility, world is experiencing
very close virtual connectivity. The statistical information provided by worldwide survey of
wearesocial blog in January, 2022[1], we can represent the increase in the number of Mobile,
Internet and Social Media users is shown in Figure 1.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
576

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

Figure 1. Wearesocial Blog Survey 2022

According to worldwide survey of wearesocial blog in 2018 [1], number of internet users in 2018
was 4.021 billion and increases by 7% every year. The exponential growth is observed in users of
social media sites. The number of social media users in 2018 is 3.0196 billion and increases by
13% every year. Easily available internet facility on smart mobile devices results in increasing
trend of multimedia based communication. In year 2018, the number of mobile phone users was
5.135 billion and per year it increases by 4%. Proliferation in number of internet users, results in
demand of the internet based services. In order to respond to these extremely growing requests rate
of multimedia communications, social site communications and many others, service providers
need a powerful hardware and software infrastructure. This fact is proved by the Intel’s survey of
computer hardware demand. According to Intel’s worldwide survey [2] the computational demand
is growing 30% to 40% every year. From year 2009 to 2016, considering the global trends of
computation, Intel data centre has increased the number of servers per pack from 140 to 280. This
verity represents that, in seven years the need of virtualization has doubled by seven folds. The
worldwide survey conducted by IDC (Interactive Data Corporation) [3] puts a light on a fact that
from year 2009 to 2019, rate of x86 server’s distribution is increased by 100.35%. The pragmatic
surveys provided by Intel and IDC indicate the increasing rate of computational demands. The
demand of computational power cannot be satisfied only with powerful hardware architectures. It
also requires the applications which run on those hardware architectures and which does the
efficient management of resources. The concept of grid emerged as a modified version of
distributed system and provides the collaborative computational environment for execution of
computational work load. It has made possible to run distributed applications in virtual
environment to fulfil the users computational demands using concept of virtualization.
Cloud emerged as a virtual platform provider to provide solution to users computational problems.
It is highlighted by Intel’s survey that, from year 2009 to 2016 the number of virtual servers
changed from 129 to 943. In terms of Grid Technology, Cloud Technology, Block Chain
Management [4], Edge computing [5], distributed system continuing its journey of providing
fruitful outcomes in field of computation. Distributed system provides a platform to solve the
problems which includes massive computational executions. The computational intensive task is
a set of instructions which includes more percentage of CPU intensive instructions than memory
intensive or I/O intensive.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
577

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

To fulfil the basic purpose of resource sharing, distributed system makes the provision of task
execution on different nodes in a distributed manner. In distributed system, any computational
problem is considered as a load. In order to execute the input load in distributed manner, it is
divided into small fragments. This process of task division is called as fragmentation. The size of
the fragment depends on the application characteristics and the policy adopted by the distributed
system. The fragmented load is then mapped over the available set of computing nodes for
execution. The policy of mapping the load to the computing nodes is called as scheduling. The
basic objective of scheduling policy is to manage the resources in order to optimize resource usage,
response time, network congestion and scheduling overhead.
A. Classification of scheduling paradigms
Scheduling paradigms of distributed system are fundamentally classified in three classes [6]:
1. Task assignment
2. Load sharing
3. Load Balancing
1. Task assignment
Task assignment approach consists of mapping of available tasks to the resources so as to improve
performance of the system. Practical limitation of task assignment approach is that it assumes that
following attributes are known in advance [6]:
1. Task characteristics
2. Computations required by each task
3. Speed of each processor
4. Cost of computation
5. Inter-process communication cost
6. Resource requirements of tasks
7. Task dependency
As it considers all mentioned attributes at static time, it does not consider the dynamically changing
behavior of the system.
2. Load sharing
Load sharing approach confirms that no node in system remain idle by simple task to node
mapping. Load sharing does not consider the state information of the system. Without considering
the state information of resources it becomes difficult to manage the run time scheduling approach.
3. Load Balancing
In distributed system to achieve better resource utilization and to maximize the throughput; it needs
to balance the workload among the available resources in such a way that each resource will have
even contribution in task execution. Load from heavily loaded nodes need to be transferred to
lightly loaded nodes. The performance of load balancing algorithm is measured in terms of
response time achieved [6]. The task of load balancing in distributed system is performed by a
special node known as load balancer.

B. Taxonomy of Load Balancing Algorithm

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
578

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

Figure 2 provides the classification of load balancing algorithms.

Figure 2. Classification of Load Balancing Algorithm

a. Comparison of Static and Dynamic Load Balancing Algorithms
Static load balancing [6-14] algorithms are simple and don’t need to have state information of
overall system for decision making. It maintains the system in steady state when the information
of task characteristics and network attributes are known prior to decision making process. It does
not consider the time variant load changes in a system. Whereas in dynamic load balancing
algorithms [15-48] decision making is done using the current state of the system. Dynamic load
balancing results in good performance benefits than static load balancing. The complexity of
dynamic load balancing algorithms is more than static load balancing algorithms.
b. Comparison of Deterministic and Probabilistic Load Balancing Algorithms
Deterministic algorithms work in deterministic manner and utilize the characteristics of tasks for
decision making. Probabilistic load balancing algorithms work on the static attributes of the system
such as number of nodes, processing capacity of nodes and network topology. These both methods
do not consider the load variation in the system with respective to time.
c. Comparison of Centralized and Distributed Load Balancing Algorithms
In centralized load balancing [17-33] approach only one node is responsible for taking scheduling
decisions. State information of the system is collected at a centralized node which coordinates the
decision making process. The coordinator node makes the decisions efficiently based on the
available state information. Coordinator node collects the state information from all nodes
involved in computation periodically. The performance of centralized load balancing system
depends on the centralized decision maker.
In distributed load balancing [34-37] system more than one nodes are responsible for making load
balancing decisions. It avoids the central dependency problem which exists in centralized dynamic
load balancing by having more than one decision makers. The complexity of distributed load
balancing is more than centralized load balancing. The communication cost incurred is also more
as it involves internodes communication. Every node in a system collects the state information
from all other nodes and does a decision making.
d. Comparison of Cooperative and Non cooperative Load Balancing Algorithms

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
579

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

In cooperative load balancing algorithms [34, 35] the nodes take the decision of load balancing
with cooperation of all other nodes. This method of load balancing is more complex and involves
larger communication overhead. In non-cooperative load balancing [35] each node has the
autonomy to take the scheduling decisions independently.
C. General Issues in designing a load balancing Algorithms
1. Load estimation policy
It considers the problem of estimating the work load of a particular node in the system.
2. Process transfer policy
It is related with the choice of executing the process either locally or at a remote node. Solution to
this issue depends on whether the load balancing approach is a static or dynamic.
3. State Information exchange policy
It decides method of exchanging the state information among the nodes involved in computation.
4. Location Policy
It takes the decision of transferring the selected task for execution.
5. Priority assignment policy
It is related with the assignment of execution priorities to local or remote tasks at a particular node.
6. Migration limiting policy
 It determines the number of times a task migration is allowed in a particular load balancing system.
I. Motivation behind the work
The basic objective of presented research work is to provide the direction to the researcher who is
working in the domain of dynamic load balancing. The research work includes fundamental
classification of load balancing. The details of dynamic load balancing are provided in more
precise way.
II. Literature Review
In modern era of computations, the demand for shared resource utilization is increasing
enormously [1-5]. Modern applications demand, sharing of computational infrastructure to achieve
minimization of response time and to increase throughput. Distributed systems attempts to solve
this problem by providing a set of autonomous computational resources interconnected by
communication network. The technique used to avoid the unbalanced utilization of computational
nodes, is called as load balancing.
Decision making system in distributed system does the mapping of the available resources to the
incoming load with best possible alternatives. Based on the result of decision making, node is
selected for execution. In work flow of load balancing, variation in time of decision making results
in two classes of load balancing.
1. Static Load Balancing
2. Dynamic Load Balancing
 If the decision making is done at static time, the corresponding load balancing is called as
static load balancing. If the decision of load distribution is taken at run time the corresponding load
balancing is called as dynamic load balancing.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
580

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

Performance of load balancing depends on a decision making policy adopted by distributed
system. Based on the policy of decision making load balancing strategies are classified as [6]
1. Global strategy
2. Cooperative strategy
3. Non-cooperative strategy
In global strategy, only one decision maker exists that takes decision of resource allocation and
job mapping over a distributed set of resources. In global strategy information is collected from all
the nodes which are involved in computation. In cooperative approach, several decision makers
exist; those take decisions at local level and cooperate with each other using message passing
system. In cooperative approach of load balancing state information is collected from neighbouring
nodes. In non-cooperative approach, each node is responsible for taking its own load balancing
decision independently. Local level decision making causes the minimization of communication
cost.
The performance of distributed system depends on the process of decision making. Accuracy of
decision making can be enhanced by using appropriate load balancing algorithm. Table 1
represents the parameters which are considered as a performance indicators of load balancing
algorithm [7],

Table 1 Performance indicators of load balancing algorithm
Sr.No. Performance

Indicator
Significance

1 Resource
Utilization

A good load balancing algorithm is expected to give
optimum resource utilization

2 Performance Performance of load balancing algorithm is checked as an
efficiency of resource utilization.

3 Scalability It is necessary attribute to be a good load balancing
algorithm to provide flexibility in increasing and
decreasing the numbers of computational nodes during the
computation.

4 Throughput This attribute measures the number of tasks completed per
unit time. For a good load balancing algorithm value of this
attribute should be high enough

5 Response
time

It is the difference in time between the job submission and
the final output. A good load balancing strategy is always
trying to minimize the response time of computation.

6 Associated
Overhead

This attribute involves job transfer cost and inter process
communication cost. It is the measure of overall
communication cost incurred in computation.

1. Static Load Balancing

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
581

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

 In static load balancing technique [6-14] the decision of task to resource mapping is taken
at static time. The decision of load balancing is governed by the static information of job behavior
and fixed characteristics of underlying resources. Static load-balancing algorithms may be either
deterministic or probabilistic [6]. Deterministic algorithm utilizes the information of properties of
nodes and characteristics of given process for load distribution. The probabilistic algorithm utilizes
the static properties of the system like number of nodes and processing capacity of each node.
Static load balancing exhibits fixed functional behavior under fixed conditions and inputs. It is
easy to predict the behavior of the system under certain conditions with fixed inputs. Based on
job properties, resource capacity and communication cost incurred, the scheduler takes the
decision of job distribution at static time. Static load balancing is simple and effective when the
workload can be sufficiently well characterized beforehand, but it fails to adjust to the fluctuations
in system load [7].
Definition 2. (Static Load Balancing) “Load balancing policies that react to the system before
job execution with known job characteristics, resource capacities and fixed arrival pattern are
termed as static policies”.
It becomes easy for policy maker to design the static policy as it excludes the dynamic state
information and run time communication overhead. The performance of static load balancing
depends on the scheduling policy used for load balancing. Static load balancing can be carry out
by using different scheduling algorithms.
Based on the scheduling algorithms used, static load balancing can be classified in following
classes [8]:
1.1 Round Robin Scheduling
In this algorithm job assignment is done in round robin fashion. The total time quantum is divided
into number of fixed length time quantum and each quantum is assigned to each processor in round
robin fashion. To improve the performance of round robin algorithm designer should consider the
job size. If the job size is large the quantum size should be large enough so as to achieve maximum
throughput. The small length of time quantum results in starvation of jobs which requires large
completion time. If the job execution is not completed in given time quantum, the job has to wait
for long period. The job waiting time depends on number of jobs in a job buffer. This type of
scheduling is useful for the jobs which require less amount of execution time.
1.2 Min-Min policy Scheduling
This algorithm calculates the minimum completion time for each node and then assigns a task to
a node with minimum completion time. It repeats the same procedure until no job remains in a
waiting queue. This strategy increases the starvation of tasks which requires high completion time
because as per the strategy defined every time a task with minimum completion time is selected
for execution.
1.3 Max-Min Scheduling
In order to achieve maximum throughput and minimum response time this algorithm selects the
task with maximum completion time and assigns it for execution. In contrast with the Min-Min
algorithm it increases the waiting time of tasks which require a minimum completion time.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
582

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

1.4 Opportunistic scheduling
This algorithm assigns the incoming task to a random node for execution. Task assignment in this
algorithm is done without calculating the load on each node.
In [9] authors presented a global load balancing algorithm known as optimal load balancing. The
basic objective of this work is to minimize the response time of task execution. It is bidding based
algorithm in which each node in a distributed system is considered as an agent. Each node in a
distributed system has a true value ‘ti’ which is equals to the inverse of computational capacity of
that node. Central coordinator collects these true values from all nodes and bids on those values
so that task allocation should be optimum. All nodes get the appropriate fraction of the incoming
load based on the true values. The system returns the profit value to each node and validates
weather that profit value is nonnegative. If the profit value is negative, then system recognizes that
the true value given by the node was incorrect. This work increases the voluntary participation of
nodes where each node is racing to get maximum profit value and gives maximum optimal solution
to task execution. This system is centralized coordinated so it creates a bottleneck in load failure
situations. This work assumes that total job arrival rate must be equal to aggregate job service rate
but this assumption cannot fulfill the real time dynamic job processing requirements.
In [10] author recommends a static job scheduling policy which ensures to have very low overhead
and is less complex as compared with dynamic load balancing strategies. Static load balancing
typically contains two components: a workload allocation scheme and a job dispatching strategy.
Workload allocation scheme calculates the relative fraction of total workload to be assigned to
each node. Job dispatching policy assigns calculated fraction to each computational node. The jobs
are dispatched using round robin mechanism. The attainment of load balancing is checked by using
a mathematical analysis of system performance and optimized allocation of workloads. The
performance metrics used in this experiment are: Mean response time which is the average
completion time of all the jobs and Mean response ratio which is the ratio of the job's response
time to its size. Job size is defined as the completion time of the job when it is executed on an idle
machine with relative speed one. The one another attribute used for performance measurement is
fairness. Fairness value is calculated by taking standard deviation of response ratio of all the jobs.
This experimental work considers a load balancing as a non linear optimization problem.
It considers four job dispatching strategies:
1. Optimized Round Robin (ORR)
2. Weighted Round Robin (WRR)
3. Optimized Random (ORAN)
4. Weighted Random (WRAN).
Comparison of all these job dispatching strategies is provided at 70% overall system utilization.
The research work concludes with the fact that ORR and ORAN achieves better fairness than WRR
and WRAN. It shows factual analysis of response time which found more predictable under an
optimized allocation strategy. It considers run queue length of CPU as only one parameter for
scheduling, so this method is applicable for CPU intensive tasks only.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
583

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

In [11] author has classified static load balancing into two categories namely Optimal and Sub-
Optimal. In optimal static load balancing technique optimization criterion function is used to
optimize throughput, resource utilization and response time. In Sub-Optimal technique more
prominence is given to the scheduling policy. This method is carried out in homogeneous
execution environment. This method does not provide load balancing in heterogeneous work
environment so it limits its performance only for homogeneous environment.
In [12] author has proposed static load balancing based optimal load balancing strategy to
minimize the mean job response time. Response time at each node is considered as an aggregation
of queuing delay, processing time and communication delay. A mean job response time is defined
as a function of load at a particular node. In this system job is either processed at the host node or
it is transferred to another node. The decision of job transfer is not depending on the current system
state so it is static in nature. The decision of job execution has taken by using two algorithms.
First algorithm is known as parametric study algorithm which provides optimal solution as a
function of communication time. This algorithm studies the effect of a speed of communication
network on a job execution time. Second algorithm considers system parameters as attributes to
provide optimal solution in job execution. The recommended research work considers the
communication time effect on job execution including queuing time and job transfer time. The
basic assumption of this work is the node characteristics and the communication delay at each
node should be known prior to job execution.
Leland and Hendrickson in [13] present a comparative study of static load balancing algorithms.
In this article authors have mapped scientific applications to the parallel computing infrastructure
using static Chaco graph partitioning software package. Performance evaluation of the algorithms
is performed on the basis of computational cost and quality of partition. The research work studied
the effect of coordinate information and application run time information on the selection of
partitioning algorithm. This work did the comparison of Kernighan-Lin (KL), Spectral and
Multilevel partitioning algorithms. The effect of these attributes on static load balancing is studied
with experimental evaluation. This method considers only bisectional graph partitioning approach.
In this article author did not discussed about method of making more than two partitions.
The performance analysis of Round Robin, Randomized, Central Manager and Threshold based
approaches of static load balancing is done by Rahmawan and Gondokaryono in [14]. The basic
attributes considered for load analysis are CPU, Memory and Hard Disk (HDD).
According to Rahmawan and Gondokaryono load on CPU for execution of total program is
calculated by using CPI i.e Clock per instruction and time required to complete one clock cycle by
CPU and queuing time.
CPU load is calculated using Equation (2.1).
Loadcpu= LqCPU / LqMAX Equation (2.1)

Where, LqCPU =Total jobs waiting in a CPU queue,
 LqMAX = Maximum length of a CPU Queue.
Loadmem =Nmused / Nm Equation (2.2)
Where, Nmused= Amount of memory used,

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
584

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

Nm =Total amount of memory.
LoadHDD= LqHDD / LqHDDMAX Equation (2.3)

Where, LqHDD= =Total jobs waiting in a HDD queue
 LqHDDMAX= Maximum length of a HDD Queue.
Load on memory and hard disk is calculated using Equation (2.2) and Equation (2.3) respectively.
Total time required for job execution is calculated using Equation (2.4),
Tjob=TCPU +Tmem+THDD Equation (2.4)
Where, Tjob =Total time required for a job to execute,
 TCPU= Total CPU time

 Tmem = Total Memory time
THDD= Total Hard Disk time
Where, TCPU is calculated using Equation (2.5) as,
TCPU =TExecution+Tqdelay Equation (2.5)
And Tmem is calculated using Equation (2.6) as,

Tmem= Nbaccess X Ltm Equation (2.6)
Where, Nbaccess = Total byte of accessed from memory and
Ltm =Memory Latency.
Rahmawan and Gondokaryono concludes in [14] as follows,
Prediction of the performance of Round Robin and Randomized algorithm is complex as it does
not use the system state for task execution. According to author randomized algorithm has better
stability than Round Robin algorithm.
Memory is not appropriate index of load balancing in central
scheduling algorithm because it has less percentage utilization than CPU and Hard Disk. CPU and
Hard Disk are appropriate load indices to be chosen for load balancing because it has 9% to 15%
utilization for CPU and 8% to 23 % utilization for hard Disk.
In threshold based algorithms also CPU utilization proves its importance as a good index for load
balancing. As this experimentation is carried out for static load balancing it is very difficult to
achieve the run time utilization of CPU as well Memory and Hard disk. Performance of this type
of experimentation can be enhanced by using real time dynamic state information of system
parameters i.e. CPU, Memory and Hard Disk. To collect dynamic values of system parameters is
not possible using static approach so these types of systems can give better results using dynamic
state information. The system works as centralized distributed system so coordinator node
becomes a bottleneck in case of failures. The system exhibits results using only homogeneous
environments.

2. Dynamic Load Balancing
Definition 3. (Dynamic Load Balancing) “Dynamic load balancing policy is defined as, a policy
in which decision of mapping of a task to a set of networked resources is taken at run time, based
on the dynamic, instantaneous state information of networked resources involved in the
computation” .

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
585

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

 In dynamic load balancing policy [15-48] the efficiency of task execution depends on the
run time state information of underlying resources.
According to the comparison of static and dynamic load balancing policies given by author [15],
1. Dynamic policies are believed to have better performance than static policies.
2. Dynamic load balancing systems are more adaptive in nature than static load balancing
systems.
3. Response time achieved in dynamic load balancing is more than static load balancing.
4. Dynamic systems are more complex than static systems and it requires more
communication overhead than static systems.
Static load balancing system is more stable than dynamic load balancing. Static load balancing is
more predictable than dynamic load balancing. Static load balancing is preemptive in nature.
Dynamic load balancing can be non preemptive. Static load balancing mechanism degrades the
performance of the system where rate of incoming load changes rapidly with respect to time. For
the systems which are having dynamic behavior, dynamic load balancing strategies are more
suitable than static load balancing. Table 2. provides the comparison of static and dynamic load
balancing approaches in more detail.

Table 2. Comparison of Static and Dynamic Load Balancing

In general, a dynamic load-balancing mechanism consists of three rules-namely, information rule,
transfer rule, and location rule [16]. The information rule defines strategy of collecting and storing
the decision making information. The transfer rule defines when to transfer and whether to transfer
the job. The location rule provides location of the nodes to or from which jobs will be transferred.

Static
Load

Balancing

Dynamic
Load Balancing

Decision
Making

Static i.e.
at compile

time

Dynamic i.e at
run time

Overhead Less More
Resource
Utilization

Less More

Predictability More Less

Preemptiveness
Inherently
preemptive

non preemptive

Load
Adaptability

Non
Adaptive

Adaptive

Reliability Less Relatively More
Response Time Less Relatively More
Stability More Less

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
586

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

These three rules are either applied at a central location or at local sites in a distributed manner.
Load in dynamic load balancing systems fluctuates at high rate so it is the responsibility of decision
maker to take the appropriate load balancing decision based on the dynamic state information.
Decision maker acts as a matchmaker which matches the dynamic demands of the user with the
available set of resources at any time instance. The node selected by the decision maker after
executing dynamic load balancing algorithm fulfills the dynamic need of the user.
In [16] author has enumerated the desired policies of a good dynamic load-balancing system as:
A. Provide short average job response time
Response time is defined as the time in between job submission and job completion. A good
dynamic load balancing strategy should result in a short average job response time.
B. Induce low overhead
The communicational overhead which includes overhead caused by job transfer and inter process
communication should be low.
C. Adaptability to changing load
System should adapt the dynamically changing behaviour of job arrival rate.
D. Be reliable.
System should be reliable so that it can provide trustworthy services to the intended user.
The decision making in dynamic load balancing can be performed at local node or at remote node.
Based on the location of decision maker Dynamic Load Balancing is classified in two major
classes:
1. Centralized Dynamic Load Balancing
2. Distribute Dynamic Load Balancing.

2.1 Centralized Dynamic Load Balancing
Definition 4. (Centralized Dynamic Load Balancing) “Dynamic load balancing approach in
which among the set of all computing nodes if only one node collects the instantaneous state
information from all other nodes in a network, and if it is responsible for taking the decision of
task to resource mapping then that system is called as a Centralized Dynamic Load Balancing
System”.
 In centralized dynamic load balancing [17-33] technique, central coordinator does the
scheduling based on the dynamic state information collected from all other nodes in underlying
network. General form of centralized dynamic load balancing consists of Master-Slave
architecture in which master node is responsible for collecting the state information from all other
slave nodes. This approach is also called as global decision making approach. Based on the
collected state information master takes the decision of dynamic load balancing which results in
finding a slave node for execution of a desired load.
In [17] author proposed Multitier Task assignment based on Pre-emptive Migration (MTTPM).
Multi-Cluster Task assignment algorithm works for managing the dynamic service time
requirements. Each host in a multitier system is assigned a predetermined service time. It considers
equal probability of task arrival and assigns arrived task to first dispatcher in a system. First

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
587

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

Dispatcher assigns that task to a first host in First Come First Serve (FCFS) manner. If the service
time of that task is less than or equal to the predetermined service time of that particular host then
task departs the system and result is sent back to the client. If the service time of task is greater
than predetermined service time of first tier, then that task is sent to second dispatcher. The process
continues till the end of task execution. The working of this algorithm depends on the service time
of task and if the estimation of service time goes wrong the system may lead to wrong decision.
In [18] simulation based experiment recommends use of DAG (Directed Acyclic Graph) based
List scheduling algorithm which results in shorter schedule length size. It works with the
heterogeneous computing environment and executes iterative scheduling algorithm to minimize
the schedule length. It performs well only when the assignment ratio of task to processor is high.
In simulation based research work [19], classification of task is done using the centralized dynamic
load balancing algorithm for improving overall resource utilization. This algorithm works for
improving data retrieval efficiency and experimental results are compared with the results of least
weighted connection algorithm. This algorithm does the classification of tasks considering only
CPU time and I/O time as parameters of task classification. It did not consider the memory
intensive task classification.
In [20] impact of heterogeneity is studied using centralized dynamic load balancing based master
slave architecture. The work presented by author on the basic assumption of one port model. At
any instant of time master can communicate with only one slave. According to author their does
not exists any optimal deterministic algorithm for dynamic load balancing with heterogeneous
network. It limits the degree of task distribution and execution. As master can communicate with
only one slave at time message broadcasting is not possible.
In [21] simulation based experimentation is presented to achieve improvement in both make span
time and cost of computation. This is achieved using centralized dynamic load balancing based
Apparent Tardiness Cost Setups-Minimum Completion Time (ATCS-MCT) scheduling heuristic.
The make span is the maximum time difference between the start and finish of a sequence of tasks
between involved computers which is calculated, after completion of the last task. This algorithm
works to reduce both the make span time and cost of job execution. The basic factors considered
by this algorithm are execution time, communication time, weight and the deadline of the task
execution. It assumes that before any resource demand, resource administrator is aware of type,
amount and all other resource related information. But in practical load balancing situations this
assumption adds limitations.
In research approach [22] generalized model of centralized heterogeneous distributed system is
presented for checking service reliability and availability in distributed systems. Instead of actual
physical computational nodes this experiment assumes availability of virtual machines. The
methods used for reliability testing in virtual environment and those used in actual environment
practically differ. It cannot be always reliable for practical situations of load balancing where the
physical set up is required.
In [23] randomized load balancing is achieved using a sliding window technique in centralized
dynamic load balancing environment. This method is based on supermarket model in which

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
588

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

customers are serviced in FIFO (First in First Out order). It assumes the situation when all the
servers are loaded; the customer selects the random server for execution. The optimality of this
method is based on the random selection approach so cannot be an appropriate method of load
balancing cannot provide optimal solution in all cases.
In [24] central server open queuing network strategy is used to carry out comparison of different
distributed load balancing approaches. This work exhibits the possibility of conversion of all
sender initiated distributed load balancing techniques into a central server open queuing network.
The basic parameters used for comparison are average execution queue length and the probability
of load migration. This research article presents a comparison of the load balancing approaches
based on CPU queue length. This research work concludes that open central quieting network can
be appropriately used only when the system is symmetric and homogeneous. Proposed work
provides the average response time close to the response time achieved by simulation. This method
does not consider the task characteristics as well as overall state information of all nodes while
load balancing which creates practical limitations.
Based on the variation in computational environment used for experimentation Centralized
Dynamic Load balancing systems can be classified in two prominent classes:
1. Centralized Homogeneous Dynamic Load Balancing
2. Centralized Heterogeneous Dynamic Load Balancing
2.1.1 Centralized Homogeneous Dynamic Load Balancing System
Definition 2.4 (Centralized Homogeneous Dynamic Load Balancing) Consider a dynamic load
balancing system with a set of N computational nodes as shown in Equation 2.7,
N= {N1, N2 ,, Nn } …..Equation (2.7)
Where, ‘µ’ is a set of respective service rates (computing capacity of CPU) of the computational
nodes from N1 to Nn as shown in Equation 2.8 ,
µ = { µ1 , µ2 ,…….. µn } …Equation (2.8)
For all nodes from N1 to Nn, if µ1= µ2=…….= µn, then the present dynamic load balancing system is
called as a Homogeneous Dynamic Load Balancing System.

Figure 3. Centralized Homogeneous Dynamic Load balancing system

Figure 3 shows centralized homogeneous dynamic load balancing system [25-27]. Incoming jobs
enter in a system through the queue associated with the master node.
Where ‘ ’ = Incoming rate of jobs in a queue.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
589

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

Then all incoming jobs in a master queue are scheduled for execution on associated set of the slave
nodes by the central scheduler at master node. As shown in figure 2.1 every node in a system is
with same computational capacity i.e. µ.

 n ……Equation (2.9)
Equation 2.9 shows the stable state of the system where the rate if incoming jobs to a master
node is exactly equals to the service rate of N slave nodes.

1. If  n , this condition represents the situation when the incoming rate of jobs to a master
is greater than the service rate of the system. In this case the queue length of a master should be
large enough to store the waiting jobs, because the system cannot give justice to the incoming job
as service rate of a system is less than incoming rate of jobs.

2. If  n , this condition represents the situation when the nodes in a system remains idle
as the service rate of the computing nodes is greater than the incoming job rates.

 In order to achieve maximum throughput and make system steady an appropriate load
balancing strategy is required. Dynamic load balancing decision in these systems does not depend
on computational capability of the slave nodes, as all nodes are with the same computational
capability. Decision of load balancing in these systems is based on a dynamic state of
computational nodes. The master collects the resource utilization of each slave node at any instant
of time and assigns the proportional load to a slave node for execution. Here central scheduler is
responsible for resource allocation to every incoming job in a system.
 Simulation based experimentation [25] considers a closed queuing network model with P
homogeneous and independent processors. The basic objective of this experimentation is to study
the performance issues associated with the scheduling mechanism in a parallel distributed
computing system. This work is more focused on studying the number of tasks created per task to
execute it in a parallel distributed system and also the task service demand variation with a time.
This research work considers two step scheduling mechanism. In first step spatial scheduling is
done for assigning the tasks to a processor queue. In second step temporal scheduling is carried
out to define the sequence of execution for a task in a processor queue. It also addressed the issues
created by an impact of overhead caused by the collection of global information in a system. This
approach does not consider the memory as an attribute for load scheduling. As the network is
homogeneous in nature, the computational and memory intensive tasks used to behave in a
different manner which depends on the run time state of the system.
 Research work in [26] recommends a homogeneous dynamic load balancing approach to
carry out the trace driven simulation study using broadcasting. In this dynamic load balancing
approach information of job arrival time, CPU and I/O demands are collected from production
system and given input to a scheduling policy. Basic objective of this work is to study the effects
of a system size (number of hosts in system), level of system load, values of attributes used for
scheduling and immobile jobs (jobs that should be executed locally) on the performance of a load
balancing mechanism. This work provides a solution for only CPU and I/O intensive tasks. It does
not provide scheduling approach for a memory intensive task.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
590

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

 In [27] a homogeneous dynamic load balancing is applied to pipelined based applications
using a concept of Dynamic Pipeline mapping (DPM).The key idea proposed in this work is, to
use free computational resources by gathering fastest stages in a pipeline and boosts the
performance of slowest pipeline stages by replication of free resources. This method does not
provide a generic solution of load balancing because it is suitable for only those applications which
are developed using framework/skeleton based tools only.
2.1.2 Centralized Heterogeneous Dynamic Load Balancing System
Definition 2.5 (Centralized Heterogeneous Dynamic Load Balancing) Consider a dynamic load
balancing system with a set of N computational nodes as shown in Equation 2.10,
N= {N1, N2 ,, Nn }…..Equation (2.10)
Where, ‘µ’ is a set of respective service rates (computing capacity of CPU) of computational nodes
from N1 to Nn as shown in Equation 2.11,
µ = { µ1 , µ2 ,…….. µn }…..Equation (2.11)
For all nodes from N1 to Nn, if µ1≠ µ2≠…….≠ µn , then the present dynamic load balancing system is
called as a Heterogeneous Dynamic Load Balancing System.

Figure 4. Centralized Heterogeneous Dynamic Load Balancing System

Figure 4. shows master-slave architecture based centralized heterogeneous dynamic load balancing
system [28-33]. In this system incoming jobs enter in a system through the queue associated with
the master node.
Where ‘ ’ = Incoming rate of jobs in a queue.
Then all incoming jobs in a master queue are scheduled for execution on associated set of slave
nodes by the central scheduler at master node. As shown in figure every node in a system is with
different computational capacity i.e. from µ1 to µn.

n 21 ….Equation (2.12)

The Equation (2.12) gives the condition when system is in stable state as the rate of incoming jobs
is equals to the sum of service rate of all slave nodes.

If 



N

i
i

1
 , this condition represents the rate of incoming jobs is greater than the total service rate

of system then the queue length of master node should be large enough to store the waiting jobs.

If 



N

i
i

1
 , this condition represents the situation when the rate of incoming jobs to master node

is smaller than the total computing capacity of the system. In this case the slave nodes which have

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
591

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

respectively larger service rates will have more jobs in their queues and remaining nodes will
remain in an idle state. This causes the starvation of slave nodes which have less service rates. To
avoid this situation the load balancing is required in centralized heterogeneous dynamic load
balancing system. Dynamic load balancing decision in these systems depends on variation in
computational capability of computational nodes as all nodes are with different computational
capability. Basic objective of load balancing system is to maintain the proportion of load and
computational capability of node.
 The basic difference between Figure 3 and Figure 4 is that in a homogeneous network,
every node is with a same computational capacity µ but in heterogeneous network each node is
having a different computational capacity i.e. µ1, µ2, …., µn. In homogeneous dynamic load balancing
system the performance of a load balancing system depends on the algorithm which is chosen for
the load balancing. In a heterogeneous dynamic load balancing mechanism, the load balancer
should consider the variance in computational capacities of underlying network and should assign
the load accordingly.
 Research work in [28] recommends the dynamic task mapping techniques for matching
and scheduling of independent tasks on a heterogeneous network. It presents two task mapping
heuristics. First is online mode in which tasks are mapped on to a node in a heterogeneous network
as soon as it arrives at mapper. In second heuristic batch of tasks is mapped to the nodes in a
network. This work does not provide solution for load balancing of dependent tasks.
 In [29] research work is carried out for heterogeneous multiple processor systems using
queuing models to achieve dynamic load balancing. This research gives two approaches for
dynamic load balancing which are, Deterministic and Nondeterministic. In a Nondeterministic
approach state independent branching probabilities are used. Where as in a Deterministic approach
criteria functions are used to enhance the performance of computing. This method does not
consider the memory or I/O intensiveness property of the task while execution.
 In [30] method of dynamic load balancing is recommended for both homogeneous as well
as heterogeneous environment using Clustering Based Heterogeneous Earliest Finish Time
(HEFT) with Duplication (CBHD) algorithm. CBHD is a combination of HEFT and Triplet
Clustering algorithm.
HEFT algorithm is based on the DAG (Directed Acyclic graph) approach and it works in following
steps:
1. The weight is assigned to each node of the graph to represent the average computation
required by the task.
2. The weight on edges represents the average communication time required by the task.
3. Rank values for each node is calculated by traversing the graph in upward direction and
summation of rank values of all possible immediate successor nodes.
4. Task assignment is done using the sorting of rank values in descending order of the rank
values. Improvement in a HEFT algorithm is done by calculating the job processing limit value of
each node.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
592

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

Triplet algorithm works for the minimization of communication time and to minimize the number
of clusters created while execution. The algorithm proposed by an author combines the features of
both improved HEFT and Triplet algorithm to achieve the best possible task distribution
methodology. The algorithm limits itself for only CPU intensive tasks and does not consider the
memory parameter for decision making of task scheduling.
 In [31] research work provides a dynamic load balancing based library to adapt parallel
code on wide range of heterogeneous computational environment with a minimal overhead and a
negligible programming cost. The method of dynamic load balancing proposed in this research
article is implemented and tested only for a high performance computing using GPU networks so
it is not applicable as a generic solution and for the low configuration networks.
 In [32] dynamic load balancing technique is applied to a network of heterogeneous
computing systems to achieve video encoding. The presented method of load balancing is
application specific and cannot be used as a generic method of load balancing.
 In [33] dynamic load balancing is applied to a network of heterogeneous computing nodes
using the characteristics of previous tasks. It considers size of input data, operational intensity and
hardware limitations. Analysis of results obtained is done by using Cellular Automata Finite
Element (CAFE) Method. In this method of dynamic load balancing execution behavior of
incoming task is depending on the historical analysis of properties of previous task. The accuracy
of prediction becomes bottleneck for execution.
2.2.2 Distributed Dynamic Load Balancing
Definition 2.6 (Distributed Dynamic Load Balancing) “If in Dynamic load balancing system
decision of task to resource mapping is carried out at more than one nodes then that system is
called as distributed dynamic load balancing system”.

Figure 5. Distributed dynamic load balancing

Figure 5 shows decentralized dynamic load balancing system [34-37]. Unlike the centralized
dynamic load balancing mechanism, this approach recommends the distributed role of coordinator.
No any single node is responsible for the decision making. Incoming jobs submitted to
computational node are executed either at that node or sent to the remote nodes for execution. The
decision of job transfer is taken by the load balancer which is available at every node. The
distributed role of a load balancer requires the information from neighboring nodes for making the
decision of load balancing. Message passing mechanism is used to exchange the load information.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
593

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

The communication cost required for this strategy limits the performance of distributed dynamic
load balancing.
In [34] an application of game theoretic model is used in the distributed system using decentralized
load balancing approach. In this approach the node plays game to balance the computational load
in a network. This work is carried out using simulation based experimentation so the real time
practical load balancing approach is missing in this work.
In research work [35] Game Theory based approach is used to solve the cooperative and no
cooperative routing problems. This approach provides a solution to the distributed load balancing
problem using team optimization approach. It uses approach of global team, cooperative team and
non-cooperative team for solving the problem. The presented method limits by assumption that
total arrival rate of customers to the system is always less than total service rate of the system. This
assumption creates contradiction when it is used for real world problem solving purpose.
 In [36] Predictive, Decentralized Load Balancing Approach based on CORBA (Common Object
Request Broker Architecture) is recommended. Basic objective of this work is to minimize the
problems in load monitoring and load prediction techniques. The basic limitation of this work is it
does not consider the system parameters for load balancing. It works well only for CORBA
compliant applications.
The author in [37] recommends a distributed load balancing policy for a multicomputer system.
System consists of three algorithms to achieve load balancing:
1. Local load balancing algorithm which is used by each processor in a system for its own
load balancing process.
2. Information Exchange algorithm which sets rules for inter information exchange process
among the processors.
3. Process migration algorithm to maintain load balancing in a system by dynamic task
migration from overloaded to under loaded processors.
This method of load balancing considers only CPU bound and I/O bound processes it does not
considers the memory bound processes.
2.2.3 Adaptive Dynamic Load Balancing
Adaptive policy of dynamic load balancing [38-43] reacts to the change in the system state by
collecting considerable system state information and finds the best possible choice of decision
making. Since, load on the system is bound to change with time; an adaptive load balancing policy
is the best to work with, as it addresses the problem of changing load [38].
Research work in [38] provides solution to the issues in parallel computing in the homogeneous
as well as heterogeneous system. This approach gives a centralized adaptive threshold based
dynamic load balancing strategy, for a parallel multiprocessor system. In this approach threshold
values varies with the change in system load. Each incoming job is assigned to a scheduler. As the
jobs are submitted continuously the load on the system varies with the time. The mean load of
overall system is calculated and the values of lower and upper thresholds are depending on mean
load are assigned. The difference in mean average load in the system readjusts the threshold values
of lower and upper thresholds.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
594

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

In [39] simulation of a Hypergraph-based dynamic load balancing mechanism is provided. The
method of periodic repartitioning for the adaptive scientific computational data at dynamic time is
proposed. The basic objective of this work is to reduce overall communication cost of application
which results in effective rise in execution time.
In simulation based experiment [40] the author has proposed an adaptive dynamic load balancing
strategy. The core part of this work is to distribute computational load among the neighboring
processors. This simulation is carried out for the dynamic load balancing of particle simulation of
three dimensional systems.
Research work in [41] recommends a neural network based server traffic prediction algorithm
known as Radial Basis Function. This work recommends three layered neural network. It considers
Input layer, Hidden layer and Output layer. In which weights on edges of neural network represents
the actual resource utilization and updated according to the real resource usage. The weights
assigned to edges of neural network are readjusted as the real work load differs. It considers load
on resources like CPU, Memory and Hard disk. System always tries to maintain a normalized load
using the resource weights.
Adaptive dynamic load balancing mechanism is presented in [42] which recommend a Distributed
Approximate Optimized Scheduling Algorithm with Partial Information (DAOSAPI). This
simulation based study gives an agent based distributed load balancing mechanism. The proposed
DAOSAPI algorithm combines the features of distributed mode, approximate optimization and
agent set scheduling approach. It gives short execution time by using DAOSAPI algorithm. It
proves its advantage over the static agent scheduling mechanism.
Object-oriented, parallel finite element framework (OOFEM) with dynamic load balancing is
presented in [43]. This research work gives a design and implementation strategy of parallel load
balancing framework in object oriented finite element environment. Base of parallelization is made
by domain decomposition and message passing mechanism. It uses OOFEM framework which is
an open source finite element solver and written in C++ language. This experimental work results
into a single framework, with the integration of individual components of the parallel, h-adaptive,
dynamically load balanced analysis. Computational work assigned to a computational node is
considered as a function of both number of processors available and the size of buffer available at
that node. This work recommends two types of buffers i.e Static and Dynamic. Static buffer is
having fixed size whereas the dynamic buffer is having dynamic size. The work load assignment
to particular node checks the packet size and confirms the availability of space at buffer. If buffer
is not available the dynamic buffer size is allocated to that node as per the requirement.
The common limitation observed in all adaptive load balancing algorithms is that, the efficiency
of task execution in each algorithm depends on the mechanism of threshold adaptation. So
threshold adaptation method becomes bottleneck for overall load balancing mechanism.
2.2.4 Resource Based Dynamic Load Balancing
Resource based dynamic load balancing [44-48] considers the dynamic state change of the
resources like CPU, RAM, I/O. It becomes necessary to consider the computational cost of every
job based on the dynamic utilization of the prime computational resources. The present thesis

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
595

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

contributes a Ranking Based Dynamic Load Balancing algorithm which considers CPU and RAM
as the basic resources for dynamic load calculation. CPU queue length, I/O queue length are
commonly used parameters for load estimation. The load in these cases is estimated as a function
of time i.e. time required for completing the task. In centralized dynamic load balancing
mechanism, the master node collects the values of resource utilization from all slave nodes and
then takes a decision of load balancing. The master chooses a victim node which can give better
efficiency and which has fewer loads for execution. Methodology of node selection depends on
dynamic load balancing algorithm which is used for implementation.
Research work presented in [44], deals with the problem of dynamic load balancing by using
weight based algorithm. In this approach dynamic load balancing is applied to a cluster of servers
which provides platform for execution of microservices. This approach considers CPU, RAM,
Hard Disk and number of server connections as basic inputs to a load balancing algorithm.
Algorithm first calculates the change in resource attributes and calculates weight of each resource.
Load calculation is done using the summation of dynamic loads on each resource. There are several
advantages of this research work:
1. The load’s weight value is not fixed it changes dynamically. This fact reflects in more
realistic approach of load calculation.
2. It does not consider the fixed probability of load distribution to available servers. So when
task comes to the system it is directly assigned to server with minimum load without checking the
probability of load distribution.
3. Factors considered for server load calculation gives more realistic load calculations.
The distribution is limited only for micro service cluster. The load index values for resources are
obtained from service provider but it is not realistic approach because the resource demands of
different applications are not unique. So the resource index values should be application
dependent.
In [45] LAN based dynamic load balancing is achieved using Platform for Mobile Agents
Distribution and Execution (PMADE). This research work presents an idea of dynamic load
balancing based on CPU, Memory and I/O. Present work elaborates the use of I/O attribute in a
dynamic load calculation of data intensive applications. Each node’s mobile agent calculates the
load on that particular node using value function. Based on calculated load task execution is carried
out dynamically. This solution requires the more communication time as the frequency of mobile
agent creation and servicing is large.
In [46] dynamic load balancing is achieved for network based servers using the Open flow
switches. Wildcards installed in each server controls the resource utilization. Floodlight is used as
open flow controller and Mininet is used as a network emulator. It considers dynamic load
balancing based on CPU usage and active connections to the server.
 In [47] author recommends a grid based distributed dynamic load balancing system. It uses
network aware scheduling mechanism. This work considers heterogeneity in terms of CPU speed,
architecture and network speed. Recommended Dispersion algorithm is divided in two parts i.e.
control and scheduling. Control part manages the mechanism of information collection.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
596

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

Scheduling does the task allocation based on the dynamic information collected by the control
part. Each node stores the information of neighboring node using message passing mechanism.
Each job submits its CPU and I/O requirement to the algorithm. Based on this information it is
determined that whether the job is CPU intensive or Memory intensive and according to that
resource mapping is done by the scheduler. Because of the distributed nature of algorithm used,
this approach takes maximum efforts for maintaining and collecting the information of dynamic
state of the system than the scheduling.

Cost function cF is calculated for each node by using Equation 2.13 in the system using the

dynamic state information of that node.

NJNJNJc SSIICCF  * ………Equation 2.13

Where, JC =CPU time required by the job,

NC =is the current CPU utilization of the candidate node,

JI = is the I/O time required by the job,

NI = is the I/O utilization of the candidate node,

JS = is the size of the job in bytes,

 NS = is the application bandwidth in bytes per second between the node at which the job

arrives, and the candidate node.
In current approach the job requirements i.e. CPU, RAM and I/O required to process the job are
submitted by the user. Based on that it is decided that whether the job is CPU intensive or RAM
intensive. If user submits the job requirements without any prior pre-processing, the result of the
system will be redirected in a wrong direction. Communication cost required for five nodes, is
calculated. Any node can receive 1.8 job packets per unit time and can send 4.8 packets per unit
time.
Research recommendations in [48] provide a feedback control mechanism based dynamic load
balancing. This work considers only I/O and Memory intensive work load distribution among the
nodes in a cluster. Dynamic load balancing is achieved for networked resources by calculating the
weights and I/O by adjusting buffer size.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
597

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

Figure 6. Architecture of Feed Back Control System

Figure 2.4 shows the basic control blocks involved in feedback control mechanism. It consists of
Load Balancing mechanism, Resource Sharing Controller and slow down history manager. After
completion of job execution, the slow down time of newly completed job and slow down history
are given as input to feedback controller. Feedback controller then determines control action for
the change in weight of CPU as well as IO. Feedback controller tries to attain the basic assumption
that sum of WCPU and WIO should be equal to 1.
 Feedback controller manage WCPU and WIO in three steps. In first step feedback controller
calculates the slowdown time Sj of recently completed job j. In second step Sj makes its entry in
the history table. Here Sj represents a pattern of recent slowdowns. Savg represents the average of
slowdowns in history table. In third step it is checked whether the Savg > Sj . If so it reflects that the
performance is increased therefore WIO is increased otherwise WIO is decreased. If Savg < Sj it
reflects that performance is decreased which suggest to increase value of WIO and vice versa. The
disadvantage of this method is, it do not analyse the reason of slow down time, without analysing
the reason it tries to adjust the resource weights this fact may leads the overall objective in wrong
predictions.
REFERENCES
[1] Wearesocial Blog, https://wearesocial.com/us/blog/2018/01/global-digital- report 2018.
[2] IT @ Intel white paper: Data Center strategy Leading Intels Business Transformation,
November 2017,

 https://www.intel.com/content/dam/www/public/us/en/documents/white papers/data-center-
strategy-paper.pdf
[3] Jean s . Bozman, Katherine Broderick,white paper, server refresh: meeting the chang ing needs
of enterprise it with hardware/software optimization, pages 1-13,July 2010.
[4] Tareq Ahram, Arman Sargolzaei, Saman Sargolzaei, Jeff Daniels, Ben Amaba, Blockchain
tech nology innovations, IEEE Technology & Engineering Management Con ference, 2017.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
598

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

[5] Najmul Hassan, Saira Gillani, Ejaz Ahmed, Ibrar Yaqoob, and Muhammad Imran, The Role
of edge computing in internet of things, IEEE communications magazine, pages 1-6, 2018.
[6] Pradeep K. Sinha, Distributed operating systems concepts and design, the institute of electrical

 and electronics engineers, IEEE Communications Society, Computer Com munications and
Networks, Second Edition, 1997 .
[7] Joshi Narayan Arvindkumar, Development of Algorithms for Optimized Process Migration for
Load Balancing in Distributed Systems, 2015. 166

 [8] T. Deepa, Dhanaraj Cheelu, A Comparative study of static and dynamic load balanc ing
algorithms in cloud computing, International conference on energy, communication, data analytics
and soft computing, 2017.
[9] Daniel Grosu and Anthony T. Chronopoulos, Algorithmic mechanism design for load

 balancing in distributed systems, IEEE Transactions On Systems, Man, and Cybernet icsPart B:
Cybernetics, Vol. 34, No. 1, February 2004.

 [10] Xueyan Tang and Samuel T. Chanson, Optimizing static job scheduling in a net work of
heterogeneous computers, IEEE Proceedings 2000 International Conference on Parallel
Processing ,pages 373-382,2000.
[11] Amit Chhabra, Gurvinder Singh, Qualitative parametric comparison of load balanc ing
algorithms in distributed computing environment , IEEE International Conference on Advanced
Computing and Communications, pages 58-61,2006.
[12] Asser N. Tantawi, Don Towsley, Optimal s tatic load balancing in distributed com puter
systems, Journal Of The Association for Computing Machinery, vol. 32, no. 2, pages 445-465,
1985.
[13] Robert Leland, Bruce Hendrickson, An empirical study of static load balancing algorithms,
Proceedings of IEEE Scalable High Performance Computing Conference, pages 682-685 ,1994 .

 [14] Hendra Rahmawan, Yudi Satria Gondokaryono, The Simulation of static load bal ancing
algorithms, International conference on electrical engineering and informatics, pages 640-645,
august 2009.
[15] P. Beaulah Soundarabai, Sandhya Rani A, Ritesh Kumar Sahai1, Thriveni J,K.R. Venugopal

 and L.M.Patnaik, Comparative study on load balancing techniques in dis tributed systems,
International Journal of Information Technology and Knowledge Management, Volume 6, No. 1,
pages 53-60, 2012. 167
[16] Hwa-Chun Lin and C. S. Raghavendra, A Dynamic load-balancing policy with a central job
dispatcher (LBC), IEEE transactions on software engineering, vol. 18, NO. 2, 1992.
 [17] Malith Jayasinghe, Panlop Zeephongsekul, Albert Y. Zomaya, Zahir Tari, Task as signment
in multiple server farms using preemptive migration and flow control, Journal of Parallel
Distributed Computing, pages1608-1621 Volume 71, 2011.
[18] G.Q. Liu, K.L. Poh, M. Xie, Iterative list scheduling for heterogeneous computing, Journal of
Parallel and Distributed Computing, 65, pages 654-665, 2005.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
599

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

[19] Zhuang Liu, Guang Dong, Hongwei Yang, Guannan Qu, Hongbin Wang and Lin Chen,
Experiment research of dynamic load balancing algorit hm based on task classi fication for data
retrieval, Advanced materials research, Volume 684 , pages 559-562, 2013.
[20] Jean-Francois Pineau , Yves Robert , Frederic Vivien, The Impact of heterogeneity on master-
slave scheduling, Parallel Computing Volume 34 , pages 158-176, 2008.
[21] Li-ya Tseng, Yeh-hao Chin , Shu-ching Wang, A Minimized makespan scheduler with
multiple factors for grid computing systems, Expert systems with applications, Volume 36 , pages
11118-11130, 2009.
 [22] Y.S. Dai, M. Xie, K.L. Poh, G.Q. Liu, A Study of service reliability and availability for
distributed systems, Reliability engineering and system safety, Volume 79, pages 103-112, 2003.
 [23] Yibing Wang, Robert Hyatt, An Improved Algorithm of Two Choices in Random ized
Dynamic Load-Balancing, Proceedings of the Fifth International Conference on Algorithms and
Architectures for Parallel Processing , 2002 .

 [24] Ishfaq Ahmad, Arif Ghafoort, and Kishan Mehrotra, Performance prediction of dis tributed
load balancing on multicomputer systems, Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, pages 830-839,1991 168
 [25] Helen D. Karatza Ralph C. Hilzer, Parallel job scheduling in homogeneous dis tributed
systems, Simulation, Volume 79, Issue 56,pages 287-298, 2003.
[26] Songnian Zhou, A Trace-driven simulation study of dynamic load balancing, IEEE
Transactions on Software Engineering, Volume 14, Issue 9, pages 1327-1341,1988 .
 [27] A. Moreno , E. Cesar , A. Guevara , J. Sorribes , T. Margalef, Load balancing in homogeneous
pipeline based applications, Parallel computing, Volume 38, pages 125- 139, 2012.
[28] Muthucumaru Maheswaran, Shoukat Ali, Howard Jay Siegel, Debra Hensgen and Richard F.
Freund, Dynamic matching and scheduling of a class of independent tasks onto heterogeneous

 computing systems, Proceedings of the 8th heterogeneous comput ing workshop (hcw 99), pages
1-15,1999.
[29] Yuan-Chieh Chow and Walter H. Kohler, Models for dynamic load balancing in a
heterogeneous multiple processor system, IEEE Transactions on computers, Volume c-28, Issue
5, pages 334-361, 1979.
[30] Doaa M. Abdelkader , Fatma Omara, Dynamic task scheduling algorithm with load balancing
for heterogeneous computing system, Egyptian Informatics Journal Volume 13, pages 135-
145,2012.
 [31] Alejandro Acosta , Vicente Blanco, Francisco Almeida, Dynamic load balancing on
heterogeneous multi-GPU systems, Computers and Electrical Engineering, Volume 39 , pages
2591-2602,2013.
[32] Svetislav Momcilovic, Aleksandar Ilic, Nuno Roma, and Leonel Sousa, Dynamic load
balancing for real-time video encoding on heterogeneous CPU+GPU systems, IEEE transactions
on multimedia, Volume 16, No. 1, pages 108-121, January 2014.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
600

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

 [33] Lukasz Rauch, Daniel Bachniak, Dynamic load balancing for cafe multiscale mod elling
methods for heterogeneous hardware infrastructure, International conference on computational
science, ICCS 2017, pages 1813-1822 , 2017. 169

 [34] Sandip Chakraborty, Soumyadip Majumder, Diganta Goswami. Approximate con gestion
games for load balancing in distributed environment, International Workshops on Distributed
Systems, IIT Kanpur, India, 2010.
 [35] Anastasios A. Economides and John A. Silvester, A game theory approach to co operative
and non-cooperative routing problems, SBT/IEEE International Symposium on
Telecommunications, pages 597-601, 2002.
[36] Dazhang Gu, Lin Yang, Lonnie R. Welch, A predictive decentralized load balancing

 approach, Proceedings of the 19th IEEE International parallel and distributed process ing
symposium , 2005.
 [37] Amnon Barak and Amnon Shiloh , A Distributed Load-balancing Policy for a

 Mul ticomputer, Software-Practice and Experience, Volume 15(9), pages 901-913 , 1985.
 [38] Taj Alam, Zahid Raza, A Dynamic Load Balancing Strategy with Adaptive Thresh old

Based Approach, 2nd IEEE International Conference on Parallel, Distributed and Grid Computing,
pages 927-932, 2012.
[39] Umit V. Catalyurek, Erik G. Boman, Karen D. Devine, Doruk Bozdag, Robert Heaphy and
Lee Ann Riesen, Hypergraph-based Dynamic Load Balancing for Adap tive Scientific
Computations, IEEE International Parallel and Distributed Processing Symposium pages 1-11,
2007.
 [40] Christoph Begau, Godehard Sutmanna, Adaptive dynamic load- balancing with ir regular
domain decomposition for particle simulations, C omputer Physics Communi cations, pages 51-
61, Volume 190, 2015.
 [41] Chen FU, Li-Jun ZHANG, Adaptive Load Balancing Strategy Based on LVS, ITM Web of
Conferences, 2017.
[42] Qingqi Long , Jie Lin, Zhixun Sun, Agent scheduling model for adaptive dynamic load
balancing in agent-based distributed simulations, Simulation Modelling Practice and Theory,
Volume 19, pages 1021-1034, 2011. 170
 [43] B. Patzak , D. Rypl, Object-oriented, parallel finite element framework with dynamic load
balancing, Advances in Engineering Software , Volume 47 pages 35-50, 2012.
 [44] Chang Yi, Xiuguo Zhang, Wei Cao, Dynamic Weight Based Load Balancing for
Microservice Cluster, Proceedings of the 2nd International Conference on Computer Science and
Application Engineering, 2018.
 [45] Neeraj Nehra, R.B.Patel, Towards Dynamic Load Balancing in Heterogeneous Clus ter
using Mobile Agent, International Conference on Computational Intelligence and Multimedia
Applications, pages 15-21, 2007.
[46] S.Wilson Prakash P. Deepalakshmi, Server-based Dynamic Load Balancing, International
Conference on Networks & Advances in Computational Technologies, pages 25-28, 2017.

Tec Empresarial | Costa Rica, v. 18 | n. 2 | p. 575-601 | 2023
601

A SURVEY ON BASIC LOAD BALANCING TECHNIQUES

 [47] David Solomon Acker, Sarvesh Kulkarni, A Dynamic Load Dispersion Algorithm for Load-
Balancing in a Heterogeneous Grid System, IEEE Sarnoff Symposium, 2007.
 [48] Xiao Qin, Hong Jiang, Yifeng Zhu, and David R. Swanson Dynamic Load Balancing for I/O
and Memory-Intensive Workload in Clusters Using a Feedback Control Mechanism, Euro-Par,
LNCS 2790, pages. 224-229, 2003.

