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ABSTRACT 

The aim of this paper is to develop a probability distribution which can be used in the theoretical 
studies of Physics. A simple basic probability distribution has been developed here and its different 
characteristics have been evaluated.  
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1. INTRODUCTION: 

Development of new probability distributions definitely increases the family of probability 
distributions and reduces the risk of using approximately near distribution. There are many 
research workers who have developed probability distribution in recent times, such as, Mukherji 
and Islam(1983), Siddiqui et al(1992,1994,1995,2016). 

This distribution will be useful when observations are presented in the form of percent increment 
or in decreasement.  

Probability is the language of statistical mechanics.  It is also fundamental to the 
understanding of quantum mechanics.  In statistical mechanics the physical problems 
concern large groups of particles, like molecules in a gas.  It is not possible to track every 
single particle’s motion; statistical mechanics uses probability distributions to describe the 
average behavior of the system.  Probability is the backbone of thermodynamics.  It enables 
us understand the likelihood of a system transitioning between different states and how it 
evolves over time.  Unlike classical mechanics, in quantum mechanics particles do not 
have fixed properties.  Their behavior is described by probability distributions.  The 
probability amplitude of finding a particle in a certain state gives us the likelihood of that 
outcome.   
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In a radioactive decay process, unstable nuclei transform into more stable ones by emitting 
particles.  The Poisson distribution enables us to model the number of decays that could happen in 
a given time period, given the average rate of decay. Reif (2009) discussed Statistical Physics in 
detail, Roe (2012) discussed the role of the theory of probability in experimental Physics. 
Kuzemsky (2016) discussed the use of the theory of probability, Michael (2021) discussed the 
probability related ideas across the theory of Physics. 

 

2. Proposed probability distribution 

The probability density function of the proposed distribution is; 

𝑓(𝑥) = !
"!#$

𝑒%!	 ,   0 < 𝑥 ≤ 1, 𝑝 < 1                 … (1) 

Graph of pdf of the proposed distribution 

Where ‘p’ is the parameter of the distribution, both variable and the parameter are having similar 
range. 

 

 

And the cumulative distribution function is; 

𝐹(𝑥) = ""!#$
"!#$

, 0 < 𝑥 ≤ 1,			𝑝 < 1      … (2) 

 

Graph of cumulative distribution function 

p 0.9

p 1.5

p 3

p 10

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x

PD
F



Tec Empresarial | Costa Rica, v. 19 | n. 1 | p 2752-2758 | 2024 

2754 

 

 

MATHEMATICAL STUDY OF A BASIC FINITE RANGE PROBABILITY DISTRIBUTION USEFUL IN THE STUDY OF THEORETICAL 
PHYSICS 

 

Reliability function 

𝑅(𝑡) = 1 − 𝐹(𝑡) = 1 −
𝑒&! − 1
𝑒! − 1 =

𝑒! − 𝑒&!

𝑒! − 1 ,				𝑡 > 0 

 

Graph of the Reliability function 

 

Hazard Rate Function 
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ℎ(𝑡) =
𝑓(𝑡)
𝑅(𝑡) =

𝑝𝑒&! − 1
𝑒! − 1
𝑒&! − 1
𝑒! − 1

=
𝑝𝑒&!

𝑒&! − 1 	𝑡 > 0 

 

Graph of the HAZARD RATE Function 

 

3. CHARACTERIZATION OF THE DISITRIBUTION: MOMENTS GENERATING 
AND CHARACTERISTIC FUNCTIONS 

3.1 Moments Generating Function 

    𝑀%(&) = 𝐸(𝑒&%)  

  = ∫ 𝑒&%𝑓(𝑥)𝑑𝑥$
)  

            𝑀%(&) =
!*"#$!#$+
("!#$)(&,!)

   … (3) 

3.2 Characteristic Function 

 

The characteristic function (c.f.) of the model can be obtained as below: 

  𝜙%(&) = 𝐸(𝑒-&%)  

  = ∫ 𝑒-&%𝑓(𝑥)𝑑𝑥$
)  
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            𝜙%(&) =
!*"%#$!#$+
("!#$)(-&,!)

    … (4) 

4. BASIC PARAMETERS OF THE DISTRIBUTION 

4.1. r th  Moment About Origin  

 

The rth moment about origin is given by 

     𝜇./ = 𝐸(𝑋.) 

 𝜇./ =
0(1,$,#3)#0(1,$,))

(#3)&(4'#$)
                             … (5) 

This in turn gives the following results:  

4.2 Mean 

𝑬(𝑿) = 	= 𝒙	𝒇(𝒙)𝒅𝒙
𝟏

𝟎
 

𝑬(𝑿) = 	= 𝒙
𝒑

𝒆𝒑 − 𝟏𝒆
𝒙𝒑𝒅𝒙

𝟏

𝟎
 

𝑬(𝑿) = 	 (𝒆
𝒑(𝒑#𝟏),𝟏)
𝒑(𝒆𝒑#𝟏)

           ….(6)  

  	

𝝁𝟏/ = 𝑬(𝑿) =
𝒆𝟐𝒑

𝒆𝒑 − 𝟏 

 

𝝁𝟐/ = 𝑬(𝑿) =
𝟐𝒆𝟐𝒑

𝒑𝟐(𝒆𝒑 − 𝟏) 

 
4.3 Variance 
 
Since variance ,  

𝑽(𝑿) = 𝑬(𝑿𝟐) − G𝑬(𝑿)H𝟐 = 𝝁𝟐 − 𝝁𝟏𝟐  

SO.     𝑽(𝑿) = ;("!#$)#!)

!)("!#$))
           …..(7)   

4.4 Median 
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To obtain the median we proceed as follows  

 

  

Taking Log on both sides; we get 

   

     … (8)   

  

5. ESTIMATION OF PARAMETER  

6.1 Maximum Likelihood Estimator of Parameter  

L=∏ !.""!

"!#$
=
->$  

= !*

("!#$)
𝑒!∑ %%*

%+,  

𝒍𝒏	𝑳 = 𝒏	𝒍𝒏	𝒑 − 𝒏	𝒍𝒏(𝒆𝒑 − 𝟏) + 𝒑N𝒙𝒊

𝒏

𝒊>𝟏

 

𝒑O =
𝒏(𝒆𝒑 − 𝟏)

𝒏𝒆𝒑 + (𝒆𝒑 − 𝟏	)∑ 𝒙𝒊𝒏
𝒊>𝟏

 

            …..(9) 
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